Lecture 12 - Oct 20
Graphs
Adapting DFS for Graph Questions

BFS: Marking Vertices and Edges
BFS: First Example on a Tree

Announcements/Reminders

® Today's class: notes template posted
e Assignment 1 due on Wednesday, October 22
e Test 1 next Monday, October 27:
+ Guide released
+ Review Session (slides, notes): Wednesday
+ Review Session , more Q&A): Friday
e Tutorial Exercisesso far:
+ Tutorial Week/ 1 (2D arrays)
+ Tutorial Week 2 (2D arrays, Proving Big-O)
+ Tutorial Week 3 (avg case analysis on doubling strategy)
+ Tutorial Week 4 (Trinode restructuring after deletions)

Test 1 (WSC, 4:30|PM to|5:20|PM)
e Coverage 1//0«4»6/./, Ge27
+ Lecture materials (slides, notes, example code)
up to and including Monday, October 20 ks

+ Tutorials 1 to 4] CL’” (5B

+ Assignment 1 "
¢ Format /_\/ Vpr f’
+ [Programming Part (Ecllpseb.

* Import a Java starter project (like Al)

* Implement Java classes/methods to pass test cases
+ Written Part (eClass):

* Primarily MCQs
* Written questions (e.g., short answers, justifications, proofs)

o VS S

2t efen B ;54 o
v 5
Yot Lwitta 7 et A(;: i

eS| Abmecf@(Cmprents m et 4
L ik puaes o davmss] b

L_pzs
K
R{ 4 p7S &
O+) ~ Rietpte jeﬁrf 4
Iv] [E| aerters meaent
Po((jes 7s |0CD

of T 0
“w

S Tot Lmatwd 4}/ W Bk op ﬁtwe@f

ém,;?h WM%A/

Lsane & & comieeted

| pES 1t
o VIS 37«6 A é;wwmg te of @(

o ErS qm; Q @M«nmqa WP ott Ck
AR o

[le’/\

oh B st osumel 2 Lo
lpoo/MP Lo - Alos A L]

th(eC | dove. S g

0”\5 (4ow1e sl BN

T*{:C# ‘\fiﬁf(?o(nooles o 7%/ = [\/))f
\-g Aowe = 4P

¥ a s VRS ten refam o Segl (.C.)
Grdph Traversals: Adapting DFS

Efficient Traversal of Graph G: oy,
Graph Questions:
@Fina a path between @ vicv 48 /7-Pf£> ;é{,

I stavt @ DFC Aom . 3. 7# vE VISPoA s Yionr

2. Ugsrtam & st o i P T Vertpe
e Is ¥ reachable from v -

Gttt £ mblaﬁvi & mt

¢ Find all connected components of G.

e Compute a spanning tree of a connected G.
L) # 0{750009-'3 @(7195 = # 90{7(’} 7 &
e Is G connected? — |

L & visted wocks 2 |V

e If G is cyclic, return a cycle.

vefav tl s
s vt e Y&fh i iea faclc ecfje,

A breadth-first search (BFS) of graph G = (V, E),

starting from some vertex v € V:

o Visits every vertex adjacent to v before visiting any other
(more distant) vertices

e BFS attempts to stay as close as possible,
whereas DFS attempts to move as far as possible

e BFS proceeds in rounds and divides the vertices into levels

o No backtracking in BFS: it is completed as soon as the
most distant level of vertices from the start ver jx v are visited.

Wﬁ{%wa As o0 Al & R\(ﬂfﬁ'\t
o

Z%///E/XVZ},Q{A tort VEATE of E

3 anlt VertiRs o B

Q. What data structure should be used to

keep track of the visited nodes? K/'F

Breadth-First Search (BFS): Marking Vertices & Edges

Before the BFS starts:

e All vertices are unvisited.

e All edges are unexplored/unmarked.

Over the course of a BFS, we mark vertices and edges:

¢ A vertex is marked visited when it is first encountered.

e Then, we iterate through each of v's incident edges, say e: C (S 9476 /6

o If edge e is already marked, then skip it.
o Otherwise, for an _undirected graph, an edge is marked as: M? 7
e A discovery edge if it leads to an unvisited vertex 41 M
e A cross edge if it leads to a visited vertex &.f
(i.e., from a different branch at the same level). 3\/5/

A Discovery Edge NS Edge

